42 research outputs found

    Insect herbivory dampens Subarctic birch forest C sink response to warming

    Get PDF
    Climate warming is anticipated to make high latitude ecosystems stronger C sinks through increasing plant production. This effect might, however, be dampened by insect herbivores whose damage to plants at their background, non-outbreak densities may more than double under climate warming. Here, using an open-air warming experiment among Subarctic birch forest field layer vegetation, supplemented with birch plantlets, we show that a 2.3 degrees C air and 1.2 degrees C soil temperature increase can advance the growing season by 1-4 days, enhance soil N availability, leaf chlorophyll concentrations and plant growth up to 400%, 160% and 50% respectively, and lead up to 122% greater ecosystem CO2 uptake potential. However, comparable positive effects are also found when insect herbivory is reduced, and the effect of warming on C sink potential is intensified under reduced herbivory. Our results confirm the expected warming-induced increase in high latitude plant growth and CO2 uptake, but also reveal that herbivorous insects may significantly dampen the strengthening of the CO2 sink under climate warming. Warming is expected to increase C sink capacity in high-latitude ecosystems, but plant-herbivore interactions could moderate or offset this effect. Here, Silfver and colleagues test individual and interactive effects of warming and insect herbivory in a field experiment in Subarctic forest, showing that even low intensity insect herbivory strongly reduces C sink potential

    Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range

    Get PDF
    Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.</p

    Towards constraining the circumpolar nitrous oxide budget

    Get PDF
    Arctic soils and sediments are well known for their huge carbon stocks and the significant positive feedback carbon dioxide (CO2) and methane (CH4) emissions can have on climate change. However, the vast amounts of nitrogen (N) and possible emissions of the strong greenhouse gas nitrous oxide (N2O) from Arctic soils are much less considered in this context. Arctic soils have been neglected in global N2O accounting, since their N2O emissions were traditionally thought to be low due to the general N-limitation of biological processes. Recent results suggest, however, that this assumption is unwarranted and needs to be revised. Still, although we know about the risk for increasing N2O emissions from the Arctic with warming, data are available only from a handful of sites and we are lacking any estimate on the circumarctic N2O budget even under the present climate. This presentation will introduce our plan to produce the first circumarctic N2O budget, an important baseline scenario against which changes in circumarctic N2O emissions can be observed with ongoing warming and global change. In order to estimate the first circumarctic N2O budget, we synthesize existing data and organize large-scale surveys of N2O fluxes across the Circumarctic. In our synthesis effort, we collect published and unpublished data on N2O emissions and N2O soil gas concentrations and analyze the data for driving variables and mechanisms underlying the N2O fluxes from various sites with different soil and vegetation characteristics. In addition, we organize measurement campaigns (via the INTERACT remote access program) to quantify N2O fluxes across a wide variety of Arctic sites using a network of collaborator stations with simple, standardized methods, and combine this N2O screening with GIS approaches to scale up the N2O fluxes step-wise from plot to regional and circumarctic levels. Ultimately, these data will be combined with existing data-sets and archived in a database that will be made available for process modelers in order to develop and improve the performance N2O models for permafrost soils. N2O flux data were published in 21 articles from 16 Arctic sites. In the frame of this project, N2O flux measurements were conducted in 2018 at 18 study sites located in Russia, Scandinavia, Svalbard, Canada and Alaska. First analyses show that N2O is released from a range of environmentally distinct sites and at variable magnitudes with soil N content, soil C/N ratios, vegetation cover, water availability, and nutrient content likely playing significant roles. Ultimately, this project will not only provide a valuable input towards the first estimate of the circumarctic N2O budget but also towards understanding the controls of Arctic N2O fluxes which is necessary for future projections. There is urgent need for collaboration among partners in this effort and we would thus like to invite interested researchers to contribute with further published or unpublished data on N2O fluxes/concentrations from Arctic sites to support our synthesis effort. Scientists are also highly requested to sample additional N2O data from “their” Arctic sites with the simple methods introduced here, in order to help us filling large data gaps

    Just a game? Unjustified virtual violence produces guilt in empathetic players

    Get PDF
    Many avid gamers discount violent conduct in video games as morally insignificant as "it is just a game." However, recent debates among users, regarding video games featuring inappropriate forms of virtual violence, suggest a more complex truth. Two ex- periments (

    Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population [v1; ref status: indexed, http://f1000r.es/2pd]

    No full text
    A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22 Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes. B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure. B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in B. pendula forest ecosystems

    Leaf litter decomposition differs among genotypes in a local Betula pendula population

    No full text
    corecore